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Abstract

The US federal court system is exploring ways to im-
prove the accountability of electronic surveillance, an
opaque process often involving cases sealed from public
view and tech companies subject to gag orders against
informing surveilled users. One judge has proposed pub-
licly releasing some metadata about each case on a paper
cover sheet as a way to balance the competing goals of
(1) secrecy, so the target of an investigation does not dis-
cover and sabotage it, and (2) accountability, to assure
the public that surveillance powers are not misused or
abused.

Inspired by the courts’ accountability challenge, we
illustrate how accountability and secrecy are simultane-
ously achievable when modern cryptography is brought
to bear. Our system improves configurability while pre-
serving secrecy, offering new tradeoffs potentially more
palatable to the risk-averse court system. Judges, law
enforcement, and companies publish commitments to
surveillance actions, argue in zero-knowledge that their
behavior is consistent, and compute aggregate surveil-
lance statistics by multi-party computation (MPC).

We demonstrate that these primitives perform effi-
ciently at the scale of the federal judiciary. To do so,
we implement a hierarchical form of MPC that mir-
rors the hierarchy of the court system. We also de-
velop statements in succinct zero-knowledge (SNARKs)
whose specificity can be tuned to calibrate the amount
of information released. All told, our proposal not only
offers the court system a flexible range of options for en-
hancing accountability in the face of necessary secrecy,
but also yields a general framework for accountability in
a broader class of secret information processes.

1 Introduction

We explore the challenge of providing public account-
ability for secret processes. To do so, we design a system
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Figure 1: The workflow of electronic surveillance.

that increases transparency and accountability for one of
the leading United States electronic surveillance laws,
the Electronic Communications Privacy Act (ECPA) [2],
which allows law enforcement agencies to request data
about users from tech companies. The core accountabil-
ity challenge in the operation of ECPA is that many of
the official acts of the judges, law enforcement agencies,
and companies remain hidden from public view (sealed),
often indefinitely. Therefore, the public has limited infor-
mation on which to base confidence in the system.

To put this in perspective: in 2016, Google received
27,850 requests from US law enforcement agencies for
data implicating 57,392 user accounts [4], and Microsoft
received 9,907 requests implicating 24,288 users [7].
These numbers, taken from the companies’ own volun-
tary transparency reports, are some of the only publicly
available figures on the scope of law enforcement re-
quests for data from technology companies under ECPA.

Underlying many of these requests is a court order. A
court order is an action by a federal judge requiring a
company to turn over data related to a target (i.e., a user)
who is suspected of committing a crime; it is issued in
response to a request from a law enforcement agency.
ECPA is one of several electronic surveillance laws, and
each follows somewhat different legal procedures; how-
ever, they broadly tend to follow the idealized workflow



in Figure 1. First, a law enforcement agency presents
a surveillance request to a federal judge (arrow 1).The
judge can either approve or deny it. Should the judge
approve the request, she signs an order authorizing the
surveillance (arrow 2). A law enforcement agency then
presents this order, describing the data to be turned over,
to a company (arrow 3). The company either complies or
contests the legal basis for the order with the judge (ar-
row 4). Should the company’s challenge be accepted, the
order could be narrowed (arrow 5) or eliminated; if not,
the company turns over the requested data (arrow 6).

These court orders are the primary procedural marker
that surveillance ever took place. They are often sealed,
i.e., temporarily hidden from the public for a period of
time after they are issued. In addition, companies are
frequently gagged, i.e., banned from discussing the or-
der with the target of the surveillance. These measures
are vital for the investigative process: were a target to
discover that she were being surveilled, she could change
her behavior, endangering the underlying investigation.

According to Judge Stephen Smith, a federal mag-
istrate judge whose role includes adjudicating requests
for surveillance, gags and seals come at a cost. Open-
ness of judicial proceedings has long been part of the
common-law legal tradition, and court documents are
presumed to be public by default. To Judge Smith, a
court’s public records are “the source of its own legit-
imacy” [37]. Judge Smith has noted several specific
ways that gags and seals undermine the legal mecha-
nisms meant to balance the powers of investigators and
those investigated [37]:

1. Indefinite sealing. Many sealed orders are ultimately
forgotten by the courts which issued them, meaning os-
tensibly temporary seals become permanent in practice.
To determine whether she was surveilled, a member of
the public would have to somehow discover the exis-
tence of a sealed record, confirm the seal had expired,
and request the record. Making matters worse, these
records are scattered across innumerable courthouses na-
tionwide.

2. Inadequate incentive and opportunity to appeal. Seals
and gags make it impossible for a target to learn she is
being surveilled, let alone contest or appeal the decision.
Meanwhile no other party has the incentive to appeal.
Companies prefer to reduce compliance and legal costs
by cooperating. A law enforcement agency would only
consider appealing when a judge denies its request; how-
ever, Judge Smith explains that even then, agencies often
prefer not to “risk an appeal that could make ‘bad law’”
by creating precedent that makes surveillance harder in
the future. As a result, judges who issue these orders
have “literally no appellate guidance.”

3. Inability to discern the extent of surveillance. Judge

Smith laments that lack of data means “neither Congress
nor the public can accurately assess the breadth and
depth of current electronic surveillance activity” [38].
Several small efforts shed some light on this process:
wiretap reports by the Administrative Office of the US
Courts [9] and the aforementioned “transparency re-
ports” by tech companies [7, 4]. These reports, while
valuable, clarify only the faintest outlines of surveillance.

The net effect is that electronic surveillance laws are
not subject to the usual process of challenge, critique,
and modification that keeps the legal system operating
within the bounds of constitutional principles. This lack
of scrutiny ultimately reduces public trust: we lack an-
swers to many basic questions. Does surveillance abide
by legal and administrative rules? Do agencies present
authorized requests to companies, and do companies re-
turn the minimum amount of data to comply? To a
public concerned about the extent of surveillance, credi-
ble assurances would increase trust. To foreign govern-
ments that regulate cross-border dataflows, such assur-
ances could determine whether companies have to drasti-
cally alter data management when operating abroad. Yet,
today, no infrastructure for making such assurances ex-
ists.

To remedy these concerns, Judge Smith proposes that
each order be accompanied by a publicly available cover
sheet containing general metadata about an order (e.g.,
kind of data searched, crimes suspected, length of the
seal, reasons for sealing) [38]. The cover sheet would
serve as a visible marker of sealed cases; when a seal
expires, the public can hold the court accountable by re-
questing the sealed document. Moreover, the cover sheet
metadata enables the public to compute aggregate statis-
tics about surveillance, complementing the transparency
reports released by the government and companies.

Designing the cover sheet involves balancing two
competing instincts: (1) for law enforcement to conduct
effective investigations, some information about surveil-
lance must be hidden and (2) public scrutiny can hold law
enforcement accountable and prevent abuses of power.
The primary design choice available is the amount of in-
formation to release.

Our contribution. As a simple sheet of paper, Judge
Smith’s proposal is inherently limited in its ability to pro-
mote public trust while maintaining secrecy. Inspired by
Judge Smith’s proposal, we demonstrate the accountabil-
ity achievable when the power of modern cryptography
is brought to bear. Cryptographic commitments can in-
dicate the existence of a surveillance document without
revealing its contents. Secure multiparty computation
(MPC) can allow judges to compute aggregate statistics
about all cases—information currently scattered across
voluntary transparency reports—without revealing data
about any particular case. Zero-knowledge arguments



can demonstrate that a particular surveillance action
(e.g., requesting data from a company) follows properly
from a previous surveillance action (e.g., a judge’s order)
without revealing the contents of either item. All of this
information is stored on an append-only ledger, giving
the courts a way to release information and the public a
definitive place to find it. Courts can post additional in-
formation to the ledger, from the date that a seal expires
to the entirety of a cover sheet. Together, these primi-
tives facilitate a flexible accountability strategy that can
provide greater assurance to the public while protecting
the secrecy of the investigative process.

To show the practicality of these techniques, we evalu-
ate MPC and zero-knowledge protocols that amply scale
to the size of the federal judiciary.1 To meet our effi-
ciency requirements, we design a hierarchical MPC pro-
tocol that mirrors the structure of the federal court sys-
tem. Our implementation supports sophisticated aggre-
gate statistics (e.g., “how many judges ordered data from
Google more than ten times?”), and scales to hundreds
of judges who may not stay online long enough to par-
ticipate in a synchronized multiround protocol. We also
implement succinct zero-knowledge arguments about the
consistency of data held in different commitments; the
legal system can tune the specificity of these statements
in order to calibrate the amount of information released.
Our implementations apply and extend the existing li-
braries Webmpc [16, 29] and Jiff [5] (for MPC) and Lib-
SNARK [34] (for zero-knowledge). Our design is not
coupled to these specific libraries, however; an analo-
gous implementation could be developed based on any
suitable MPC and SNARK libraries. Thus, our design
can straightforwardly inherit efficiency improvements of
future MPC and SNARK libraries.

Finally, we observe that the federal court system’s ac-
countability challenge is an instance of a broader class
of secret information processes, where some informa-
tion must be kept secret among participants (e.g., judges,
law enforcement agencies, and companies) engaging in
a protocol (e.g., surveillance as in Figure 1), yet the pro-
priety of the participants’ interactions are of interest to
an auditor (e.g., the public). After presenting our system
as tailored to the case study of electronic surveillance,
we describe a framework that generalizes our strategy to
any accountability problem that can be framed as a secret
information process. Concrete examples include clinical
trials, public spending, and other surveillance regimes.

In summary, we design a novel system achieving pub-
lic accountability for secret processes while leverag-
ing off-the-shelf cryptographic primitives and libraries.
We call the system “AUDIT,” which can be read as an
acronym for “Accountability of Unreleased Data for Im-

1There are approximately 900 federal judges [10].

proved Transparency.” The design is adaptable to new
legal requirements, new transparency goals, and entirely
new applications within the realm of secret information
processes.

Roadmap. Section 2 discusses related work. Section 3
introduces our threat model and security goals. Sec-
tion 4 introduces the system design of our accountability
scheme for the court system, and Section 5 presents de-
tailed protocol algorithms. Sections 6 and 7 discuss the
implementation and performance of hierarchical MPC
and succinct zero knowledge. Section 8 generalizes our
framework to a range of scenarios beyond electronic
surveillance, and Section 9 concludes.

2 Related Work

Accountability. The term accountability has many defi-
nitions. [21] categorizes technical definitions of account-
ability according to the timing of interventions, informa-
tion used to assess actions, and response to violations;
[20] further formalizes these ideas. [31] surveys defini-
tions from both computer science and law. [44] surveys
definitions specific to distributed systems and the cloud.

In the terminology of these surveys, our focus is on
detection (“The system facilitates detection of a viola-
tion” [21]) and responsibility (“Did the organization fol-
low the rules?” [31]). Our additional challenge is that we
consider protocols that occur in secret. Other account-
ability definitions consider how “violations [are] tied to
punishment” [21, 28]; we defer this question to the le-
gal system and consider it beyond the scope of this work.
Unlike [32], which advocates for “prospective” account-
ability measures like access control, our view of account-
ability is entirely retrospective.

Implementations of accountability in settings where
remote computers handle data (e.g., the cloud [32,
39, 40] and healthcare [30]) typically follow the
transparency-centric blueprint of information account-
ability [43]: remote actors record their actions and make
logs available for scrutiny by an auditor (e.g, a user). In
our setting (electronic surveillance), we strive to release
as little information as possible subject to accountability
goals, meaning complete transparency is not a solution.

Cryptography and government surveillance. Kroll,
Felten, and Boneh [27] also consider electronic surveil-
lance but focus on cryptographically ensuring that partic-
ipants only have access to data when legally authorized.
Such access control is orthogonal to our work. Their sys-
tem includes an audit log that records all surveillance
actions; much of their logged data is encrypted with a
“secret escrow key.” In contrast, motivated by concerns
articulated directly by the legal community, we focus ex-
clusively on accountability and develop a nuanced frame-



work for public release of controlled amounts of infor-
mation to address a general class of accountability prob-
lems, of which electronic surveillance is one instance.

Bates et al. [12] consider adding accountability to
court-sanctioned wiretaps, in which law enforcement
agencies can request phone call content. They encrypt
duplicates of all wiretapped data in a fashion only acces-
sible by courts and other auditors and keep logs thereof
such that they can later be analyzed for aggregate statis-
tics or compared with law enforcement records. A key
difference between [12] and our system is that our de-
sign enables the public to directly verify the propriety of
surveillance activities, partially in real time.

Goldwasser and Park [23] focus on a different legal
application: secret laws in the context of the Foreign
Intelligence Surveillance Act (FISA) [3], where the op-
erations of the court applying the law is secret. Suc-
cinct zero-knowledge is used to certify consistency of
recorded actions with unknown judicial actions. While
our work and [23] are similar in motivation and share
some cryptographic tools, Goldwasser and Park address
a different application. Moreover, our paper differs in its
implementations demonstrating practicality and its con-
sideration of aggregate statistics. Unlike this work, [23]
does not model parties in the role of companies.

Other research that suggests applying cryptography
to enforce rules governing access-control aspects of
surveillance includes: [25], which enforces privacy for
NSA telephony metadata surveillance; [36], which uses
private set intersection for surveillance involving joins
over large databases; and [35], which uses the same tech-
nique for searching communication graphs.

Efficient MPC and SNARKs. LibSNARK [34] is the
primary existing implementation of SNARKs. (Other li-
braries are in active development [1, 6].) More numer-
ous implementation efforts have been made for MPC
under a range of assumptions and adversary models,
e.g., [16, 29, 5, 11, 42, 19]. The idea of placing most
of the workload of MPC on a subset of parties has
been explored before, (e.g., constant-round protocols by
[18, 24]); we build upon this literature by designing a
hierarchically structured MPC protocol specifically to
match the hierarchy of the existing US court system.

3 Threat Model and Security Goals

Our high-level policy goals are to hold the electronic
surveillance process accountable to the public by (1)
demonstrating that each participant performs its role
properly and stays within the bounds of the law and (2)
ensuring that the public is aware of the general extent of
government surveillance. The accountability measures
we propose place checks on the behavior of judges, law

enforcement agencies, and companies. Such checks are
important against oversight as well as malice, as these
participants can misbehave in a number of ways. For
example, as Judge Smith explains, forgetful judges may
lose track of orders whose seals have expired. More ma-
liciously, in 2016, a Brooklyn prosecutor was arrested
for “spy[ing] on [a] love interest” and “forg[ing] judges’
signatures to keep the eavesdropping scheme running for
about a year” [22].

Our goal is to achieve public accountability even in the
face of unreliable and untrustworthy participants. Next,
we specify our threat model for each type of participant
in the system, and enumerate the security goals that, if
met, will make it possible to maintain accountability un-
der this threat model.

3.1 Threat model
Our threat model considers the three parties presented
in Figure 1—judges, law enforcement agencies, and
companies—along with the public. Their roles and the
assumptions we make about each are described below.
We assume all parties are computationally bounded.

Judges. Judges consider requests for surveillance and
issue court orders that allow law enforcement agencies to
request data from companies. We must consider judges
in the context of the courts in which they operate, which
include staff members and possibly other judges. We
consider courts to be honest-but-curious: they will ad-
here to the designated protocols, but should not be able
to learn internal information about the workings of other
courts. Although one might argue that the judges them-
selves can be trusted with this information, we do not
trust their staffs. Hereon, we use the terms “judge” and
“court” interchangeably to refer to an entire courthouse.

In addition, when it comes to sealed orders, judges
may be forgetful: as Judge Smith observes, judges fre-
quently fail to unseal orders when the seals have ex-
pired [38].

Law enforcement agencies. Law enforcement agen-
cies make requests for surveillance to judges in the con-
text of ongoing investigations. If these requests are ap-
proved and a judge issues a court order, a law enforce-
ment agency may request data from the relevant compa-
nies. We model law enforcement agencies as malicious:
e.g., they may forge or alter court orders in order to gain
access to unauthorized information (as in the case of the
Brooklyn prosecutor [22]).

Companies. Companies possess the data that law en-
forcement agencies may request if they hold a court or-
der. Companies may optionally contest these orders and,



if the order is upheld, must supply the relevant data to
the law enforcement agency. We model companies as
malicious: e.g., they might wish to contribute to unau-
thorized surveillance while maintaining the outside ap-
pearance that they are not. Specifically, although compa-
nies currently release aggregate statistics about their in-
volvement in the surveillance process [4, 7], our system
does not rely on their honesty in reporting these num-
bers. Other malicious behavior might include colluding
with law enforcement to release more data than a court
order allows or furnishing data in the absence of a court
order.

The public. We model the public as malicious, as the
public may include criminals who wish to learn as much
as possible about the surveillance process in order to
avoid being caught.2

Remark 3.1. Our system requires the parties involved
in surveillance to post information to a shared ledger at
various points in the surveillance process. Correspon-
dence between logged and real-world events is an aspect
of any log-based record-keeping scheme that cannot be
enforced using technological means alone. Our system
is designed to encourage parties to log honestly or re-
port dishonest logging they observe (see Remark 4.1).
Our analysis focuses on the cryptographic guarantees
provided by the system, however, rather than a rigor-
ous game-theoretic analysis of incentive-based behavior.
Most of this paper therefore assumes that surveillance
orders and other logged events are recorded correctly,
except where otherwise noted.

3.2 Security Goals
In order to achieve accountability in light of this threat
model, our system will need to satisfy three high-level
security goals.

Accountability to the public. The system must re-
veal enough information to the public that members of
the public are able to verify that all surveillance is con-
ducted properly according to publicly known rules, and
specifically, that law enforcement agencies and compa-
nies (which we model as malicious) do not deviate from
their expected roles in the surveillance process. The pub-
lic must also have enough information to prompt courts
to unseal records at the appropriate times.

Correctness. All of the information that our system
computes and reveals must be correct. The aggregate

2By placing all data on an immutable public ledger and giving the
public no role in our system besides that of observer, we effectively
reduce the public to a passive adversary.

statistics it computes and releases to the public must ac-
curately reflect the state of electronic surveillance. Any
assurances that our system makes to the public about the
(im)propriety of the electronic surveillance process must
be reported accurately.

Confidentiality. The public must not learn information
that could undermine the investigative process. None
of the other parties (courts, law enforcement agencies,
and companies) may learn any information beyond that
which they already know in the current ECPA process
and that which is released to the public.

For particularly sensitive applications, the confi-
dentiality guarantee should be perfect (information-
theoretic): this means confidentiality should hold uncon-
ditionally, even against arbitrarily powerful adversaries
that may be computationally unbounded.3 A perfect con-
fidentiality guarantee would be of particular importance
in contexts where unauthorized breaks of confidentiality
could have catastrophic consequences (such as national
security). We envision that a truly unconditional confi-
dentiality guarantee could catalyze the consideration of
accountability systems in contexts involving very sensi-
tive information where decision-makers are traditionally
risk-averse, such as the court system.

4 System Design

We present the design of our proposed system for ac-
countability in electronic surveillance. Section 4.1 infor-
mally introduces four cryptographic primitives and their
security guarantees.4 Section 4.2 outlines the configura-
tion of the system—where data is stored and processed.
Section 4.3 describes the workflow of the system in re-
lation to the surveillance process summarized in Figure
1. Section 4.4 discusses the packages of design choices
available to the court system, exploiting the flexibility of
the cryptographic tools to offer a range of options that
trade off between secrecy and accountability.

3This is in contrast to computational confidentiality guarantees,
which provide confidentiality only against adversaries that are efficient
or computationally bounded. Even with the latter weaker type of guar-
antee, it is possible to ensure confidentiality against any adversary with
computing power within the realistically foreseeable future; compu-
tational guarantees are quite common in practice and widely consid-
ered acceptable for many applications. One reason to opt for com-
putational guarantees over information-theoretic ones is that typically,
information-theoretic guarantees carry some loss in efficiency; how-
ever, this benefit may be outweighed in particularly sensitive applica-
tions, or when confidentiality is desirable for a very long-term future
where advances in computing power are not foreseeable.

4For rigorous formal definitions of these cryptographic primitives,
we refer to any standard cryptography textbook (e.g., [26]).



4.1 Cryptographic Tools

Append-only ledgers. An append-only ledger is a log
containing an ordered sequence of data consistently visi-
ble to anyone (within a designated system), and to which
data may be appended over time, but whose contents may
not be edited or deleted. The append-only nature of the
ledger is key for the maintenance of a globally consistent
and tamper-proof data record over time.

In our system, the ledger records credibly time-
stamped information about surveillance events. Typi-
cally, data stored on the ledger will cryptographically
hide some sensitive information about a surveillance
event, while revealing select other information about it
for the sake of accountability. Placing information on the
ledger is one means by which we reveal information to
the public, facilitating the security goal of accountability
from Section 3.

Cryptographic commitments. A cryptographic com-
mitment c is a string generated from some input data D,
which has the properties of hiding and binding: i.e., c re-
veals no information about the value of D, and yet D can
be revealed or “opened” (by the person who created the
commitment) in such a way that any observer can be sure
that D is the data with respect to which the commitment
was made. We refer to D as the content of c.

In our system, commitments indicate that a piece of
information (e.g., a court order) exists and that its con-
tent can credibly be opened at a later time. Posting com-
mitments to the ledger also establishes the existence of a
piece of information at a given point in time. Returning
to the security goals from Section 3, commitments make
it possible to reveal a limited amount of information early
on (achieving a degree of accountability) without com-
promising investigative secrecy (achieving confidential-
ity). Later, when confidentiality is no longer necessary
and information can be revealed (i.e., a seal on an order
expires), then the commitment can be opened by its cre-
ator to achieve full accountability.

Commitments can be perfectly (information-
theoretically) hiding, achieving the perfect confi-
dentiality goal of in Section 3.2. A well-known
commitment scheme that is perfectly hiding is the
Pedersen commitment.5

Zero-knowledge. A zero-knowledge argument6 allows
a prover P to convince a verifier V of a fact without

5While the Pedersen commitment is not succinct, we note that by
combining succinct commitments with perfectly hiding commitments
(as also suggested by [23]), it is possible to obtain a commitment that
is both succinct and perfectly hiding.

6Zero-knowledge proof is a more commonly used term than zero-
knowledge argument. The two terms denote very similar concepts; the
difference is lies only in the nature of the soundness guarantee (i.e., that
false statements cannot be convincingly attested to), which is compu-
tational for arguments and statistical for proofs.

revealing any additional information about the fact in
the process of doing so. P can provide to V a tuple
(R,x,π) consisting of a binary relation R, an input x,
and a proof π , such that the verifier is convinced that
∃w s.t. (x,w)∈R yet cannot infer anything about the wit-
ness w. Three properties are required of zero-knowledge
arguments: completeness, that any true statement can be
proven by the honest algorithm P such that V accepts
the proof; soundness, that no purported proof of a false
statement (produced by any algorithm P∗) should be ac-
cepted by the honest verifier V ; and zero-knowledge, that
the proof π reveals no information beyond what can be
inferred just from the desired statement that (x,w) ∈ R.

In our system, zero-knowledge makes it possible to re-
veal how secret information relates to a system of rules
or to other pieces of secret information without revealing
any further information. Concretely our implementation
(detailed in Section 7) allows law enforcement to attest
(1) knowledge of the content of a commitment c (e.g., to
an email address in a request for data made by a law en-
forcement agency) demonstrating the ability to later open
c; and (2) that the content of a commitment c is equal to
the content of a prior commitment c′ (e.g., to an email ad-
dress in a court order issued by a judge). In case even (2)
reveals too much information, our implementation sup-
ports not specifying c′ exactly, and instead attesting that
c′ lies in a given set S (e.g., S could include all judges’
surveillance authorizations from the last month).

In the terms of our security goals from Section 3, zero
knowledge arguments can demonstrate to the public that
commitments can be opened and that proper relation-
ships between committed information is preserved (ac-
countability) without revealing any further information
about the surveillance process (confidentiality). If these
arguments fail, the public can detect when a participant
has deviated from the process (accountability).

The SNARK construction [15] that we suggest for use
in our system achieves perfect (information-theoretic)
confidentiality, a goal stated in Section 3.2.7

Secure multiparty computation (MPC). MPC allows a
set of n parties p1, . . . , pn, each in possession of private
data x1, . . . ,xn, to jointly compute the output of a function
y = f (x1, . . . ,xn) on their private inputs. y is computed
via an interactive protocol executed by the parties.

Secure MPC makes two guarantees: correctness and
secrecy. Correctness means that the output y is equal to
f (x1, . . . ,xn). Secrecy means that any adversary that cor-
rupts some subset S ⊂ {p1, . . . , pn} of the parties learns
nothing about {xi : pi /∈ S} beyond what can already be

7In fact, [15] states their secrecy guarantee in a computational (not
information-theoretic) form, but their unmodified construction does
achieve perfect secrecy and the proofs of [15] suffice unchanged to
prove the stronger definition [41]. That perfect zero-knowledge can be
achieved is also remarked in the appendix of [14].
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Figure 2: System configuration. Participants (rectangles)
read and write to a public ledger (cloud) and local storage
(ovals). The public (diamond) reads from the ledger.

inferred given the adversarial inputs {xi : pi ∈ S} and the
output y. Secrecy is formalized by stipulating that a sim-
ulator that is given only ({xi : pi ∈ S},y) as input must be
able to produce a “simulated” protocol transcript that is
indistinguishable from the actual protocol execution run
with all the real inputs (x1, . . . ,xn).

In our system, MPC enables computation of aggregate
statistics about the extent of surveillance across the en-
tire court system through a computation among individ-
ual judges. MPC eliminates the need to pool the sensitive
data of individual judges in the clear or to defer to com-
panies to compute and release this information piece-
meal. In the terms of our security goals, MPC reveals
information to the public (accountability) from a source
we trust to follow the protocol honestly (the courts) with-
out revealing the internal workings of courts to one an-
other (confidentiality). It also eliminates the need to rely
on potentially malicious companies to reveal this infor-
mation themselves (correctness).

Secret sharing. Secret sharing facilitates our hierarchi-
cal MPC protocol. A secret sharing of some input data
D consists of a set of strings (D1, . . . ,DN), called shares,
satisfying two properties: (1) any subset of N−1 shares
reveals no information about D, and (2) given all the N
shares, D can easily be reconstructed.8

Summary. In summary, these cryptographic tools sup-
port three high-level properties that we utilize to achieve
our security goals:

1. Trusted records of events: The append-only ledger
and cryptographic commitments create a trustwor-
thy record of surveillance events without revealing
sensitive information to the public.

2. Demonstration of compliance: Zero-knowledge ar-
guments allow parties to provably assure the public

8For simplicity, we have described so-called “N-out-of-N” secret-
sharing. More generally, secret sharing can guarantee that any subset
of k≤N shares enable reconstruction, while any subset of at most k−1
shares reveals nothing about D.

that relevant rules have been followed without re-
vealing any secret information.

3. Transparency without handling secrets: MPC en-
ables the court system to accurately compute and re-
lease aggregate statistics about surveillance events
without ever sharing the sensitive information of in-
dividual parties.

4.2 System Configuration
Our system is centered around a publicly visible, append-
only ledger where the various entities involved in the
electronic surveillance process can post information. As
depicted in Figure 2, every judge, law enforcement
agency, and company contributes data to this ledger.
Judges post cryptographic commitments to all orders is-
sued. Law enforcement agencies post commitments to
their activities (warrant requests to judges and data re-
quests to companies), and zero-knowledge arguments
about the requests they issue. Companies do the same
for the data they deliver to agencies. Members of the
public can view and verify all data posted to the ledger.

Each judge, law enforcement agency, and company
will need to maintain a small amount of infrastructure: a
computer terminal through which to compose posts and
local storage (the ovals in Figure 2) to store sensitive in-
formation (e.g., the content of sealed court orders). To
attest to the authenticity of posts to the ledger, each par-
ticipant will need to maintain a private signing key and
publicize a corresponding verification key. We assume
that public-key infrastructure could be established by a
reputable party like the Administrative Office of the US
Courts.

The ledger itself could be maintained as a distributed
system among the participants in the process, a dis-
tributed system among a more exclusive group of partic-
ipants with higher trustworthiness (e.g., the circuit courts
of appeals), or by a single entity (e.g., the Administrative
Office of the US Courts or the Supreme Court).

4.3 Workflow

Posting to the ledger. The workflow of our system aug-
ments the electronic surveillance workflow in Figure 1
with additional information posted to the ledger as de-
picted in Figure 3. When a judge issues an order (step
2 of Figure 1), she also posts a commitment to the or-
der and additional metadata about the case. At a min-
imum, this metadata must include the date that the or-
der’s seal expires; depending on the system configura-
tion, she could post other metadata (e.g., Judge Smith’s
cover sheet). The commitment allows the public to later
verify that the order was properly unsealed but reveals
no information about the commitment’s content in the
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Figure 3: Data posted to the public ledger as the protocol
runs. Time moves from left to right. Each rectangle is
a post to the ledger. Dashed arrows between rectangles
indicate that the source of the arrow could contain a vis-
ible reference to the destination. The ovals contain the
entities that make each post.

meantime, achieving a degree of accountability in the
short-term (while confidentiality is necessary) and full
accountability in the long-term (when the seal expires
and confidentiality is unnecessary). Since judges are
honest-but-curious, they will adhere to this protocol and
reliably post commitments whenever new court orders
are issued.

The agency then uses this order to request data from a
company (step 3 in Figure 1) and posts a commitment to
this request alongside a zero-knowledge argument that
the request is compatible with a court order (and pos-
sibly also with other legal requirements). This com-
mitment, which may never be opened, provides a small
amount of accountability within the confines of confiden-
tiality, revealing that some law enforcement action took
place. The zero-knowledge argument takes accountabil-
ity a step further: it demonstrates to the public that the
law enforcement action was compatible with the original
court order (which we trust to have been committed prop-
erly), forcing the potentially-malicious law enforcement
agency to adhere to the protocol or make public its non-
compliance. (Failure to adhere would result in a publicly
visible invalid zero-knowledge argument.) If the com-
pany responds with matching data (step 6 in Figure 1), it
posts a commitment to its response and an argument that
it furnished (only) the data implicated by the order and
data request. These commitments and arguments serve a
role analogous to those posted by law enforcement.

This system does not require commitments to all ac-
tions in Figure 1. For example, it only requires a law en-
forcement agency to commit to a successful request for
data (step 3) rather than any proposed request (step 1).
The system could easily be augmented with additional
commitments and proofs as desired by the court system.

The zero-knowledge arguments about relationships

between commitments reveal one additional piece of in-
formation. For a law enforcement agency to prove that
its committed data request is compatible with a particu-
lar court order, it must reveal which specific committed
court order authorized the request. In other words, the
zero-knowledge arguments reveal the links between spe-
cific actions of each party (dashed arrows in Figure 3).
These links could be eliminated, reducing visibility into
the workflow of surveillance. Instead, entities would ar-
gue that their actions are compatible with some court or-
der among a group of recent orders.

Remark 4.1. We now briefly discuss other possible ma-
licious behaviors by law enforcement agencies and com-
panies involving inaccurate logging of data. Though, as
mentioned in Remark 3.1, correspondence between real-
world events and logged items is not enforceable by tech-
nological means alone, we informally argue that our de-
sign incentivizes honest logging and reporting of dishon-
est logging under many circumstances.

A malicious law enforcement agency could omit com-
mitments or commit to one surveillance request but send
the company a different request. This action is visible to
the company, which could reveal this misbehavior to the
judge. This visibility incentivizes companies to record
their actions diligently so as to avoid any appearance of
negligence, let alone complicity in the agency’s misbe-
havior.

Similarly, a malicious company might fail to post a
commitment or post a commitment inconsistent with its
actual behavior. These actions are visible to law en-
forcement agencies, who could report violations to the
judge (and otherwise risk the appearance of negligence
or complicity). To make such violations visible to the
public, we could add a second law enforcement com-
mitment that acknowledges the data received and proves
that it is compatible with the original court order and
law enforcement request.

However, even incentive-based arguments do not ad-
dress the case of a malicious law enforcement agency
colluding with a malicious company. These entities
could simply withhold from posting any information to
the ledger (or post a sequence of false but consistent in-
formation), thereby making it impossible to detect viola-
tions. To handle this scenario, we have to defer to the
legal process itself: when this data is used as evidence
in court, a judge should ensure that appropriate docu-
mentation was posted to the ledger and that the data was
gathered appropriately.

Aggregate statistics. At configurable intervals, the in-
dividual courts use MPC to compute aggregate statistics
about their surveillance activities.9 An analyst, such as

9Microsoft [7] and Google [4] currently release their transparency
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Figure 4: The flow of data as aggregate statistics are
computed. Each lower-court judge calculates its com-
ponent of the statistic and secret-shares it into 12 shares,
one for each judicial circuit (illustrated by colors). The
servers of the circuit courts then engage in a MPC to
compute the aggregate statistic from the input shares.

the Administrative Office of the US Courts, receives the
result of this MPC and posts it to the ledger. The par-
ticular kinds of aggregate statistics computed are at the
discretion of the court system. They could include fig-
ures already tabulated in the Administrative Office of the
US Court’s Wiretap Reports [9] (i.e., orders by state and
by criminal offense) and in company-issued transparency
reports [4, 7] (i.e., requests and number of users impli-
cated by company). Due to the generality10 of MPC, it
is theoretically possible to compute any function of the
information known to each of the judges. For perfor-
mance reasons, we restrict our focus to totals and aggre-
gated thresholds, a set of operations expressive enough
to replicate existing transparency reports.

The statistics themselves are calculated using MPC.
In principle, the hundreds of magistrate and district court
judges could attempt to directly perform MPC with each
other. However, as we find in Section 6, computing
even simple functions among hundreds of parties is pro-
hibitively slow. Moreover, the logistics of getting every
judge online simultaneously with enough reliability to
complete a multiround protocol would be difficult; if a
single judge went offline, the protocol would stall.

Instead, we compute aggregate statistics in a hierar-
chical manner as depicted in Figure 4. We exploit the
existing hierarchy of the federal court system. Each
of the lower-court judges is under the jurisdiction of
one of twelve circuit courts of appeals. Each lower-

reports every six months and the Administrative Office of the US
Courts does so annually [9]. We take these intervals to be our base-
line for the frequency with which aggregate statistics would be re-
leased in our system, although releasing statistics more frequently (e.g.,
monthly) would improve transparency.

10General MPC is a common term used to describe MPC that can
compute arbitrary functions of the participants’ data, as opposed to just
restricted classes of functions.

court judge computes her individual component of the
larger aggregate statistic (e.g., number of orders issued
against Google in the past six months) and divides it
into twelve secret shares, sending one share to (a server
controlled by) each circuit court of appeals. Distinct
shares are represented by separate colors in Figure 4.
So long as at least one circuit server remains uncom-
promised, the lower-court judges can be assured—by the
security of the secret-sharing scheme—that their contri-
butions to the larger statistic are confidential. The circuit
servers engage in a twelve-party MPC that reconstructs
the judges’ input data from the shares, computes the de-
sired function, and reveals the result to the analyst. By
concentrating the computationally intensive and logisti-
cally demanding part of the MPC process in twelve stable
servers, this design eliminates many of the performance
and reliability challenges of the flat (non-hierarchical)
protocol. (Section 6 discusses performance.)

This MPC strategy allows the court system to compute
aggregate statistics (towards the accountability goal of
Section 3.2). Since courts are honest-but-curious, and by
the correctness guarantee of MPC, these statistics will be
computed accurately on correct data (correctness of Sec-
tion 3.2). MPC enables the courts to perform these com-
putations without revealing any court’s internal informa-
tion to any other court (confidentiality of Section 3.2).

4.4 Additional Design Choices

The preceding section described our proposed system
with its full range of accountability features. This con-
figuration is only one of many possibilities. Although
cryptography makes it possible to release information in
a controlled way, the fact remains that revealing more
information poses greater risks to investigative integrity.
Depending on the court system’s level of risk-tolerance,
features can be modified or removed entirely to adjust
the amount of information disclosed.

Cover sheet metadata. A judge might reasonably fear
that a careful criminal could monitor cover sheet meta-
data to detect surveillance. At the cost of some trans-
parency, judges could post less metadata when commit-
ting to an order. (At a minimum, the judge must post
the date at which the seal expires.) The cover sheets in-
tegral to Judge Smith’s proposal were also designed to
supply certain information towards assessing the scale of
surveillance. MPC replicates this outcome without re-
leasing information about individual orders.

Commitments by individual judges. In some cases,
posting a commitment might reveal too much. In a low-
crime area, mere knowledge that a particular judge ap-
proved surveillance could spur a criminal organization
to change its behavior. A number of approaches would



address this concern. Judges could delegate the responsi-
bility of posting to the ledger to the same judicial circuits
that mediate the hierarchical MPC. Alternatively, each
judge could continue posting to the ledger herself, but
instead of signing the commitment under her own name,
she could sign it as coming from some court in her judi-
cial circuit, or nationwide without revealing which one
(group signatures [17] or ring signatures [33] are de-
signed for this sort of anonymous signing within groups).
Either of these approaches would conceal which individ-
ual judge approved the surveillance.

Aggregate statistics. The aggregate statistic mechanism
offers a wide range of choices about the data to be re-
vealed. For example, if the court system is concerned
about revealing information about individual districts,
statistics could be aggregated by any number of other pa-
rameters, including the type of crime being investigated
or the company from which the data was requested.

5 Protocol Definition

We now define a complete protocol capturing the work-
flow from Section 4. We assume a public-key infrastruc-
ture and synchronous communication on authenticated
(encrypted) point-to-point channels.

Preliminaries. The protocol is parametrized by:
• a secret-sharing scheme Share,
• a commitment scheme C,
• a special type of zero-knowledge primitive SNARK,
• a multi-party computation protocol MPC, and
• a function CoverSheet that maps court orders to

cover sheet information.
Several parties participate in the protocol:
• n judges J1, . . . ,Jn;
• m law enforcement agencies A1, . . . ,Am;
• q companies C1, . . . ,Cq;
• r trustees T1, . . . ,Tr;11 and
• P, a party representing the public.
• Ledger, a party representing the public ledger;
• Env, a party called “the environment,” which models

the occurrence over time of exogenous events.
Ledger is a simple ideal functionality allowing any

party to (1) append entries to a time-stamped append-
only ledger and (2) retrieve ledger entries. Entries are
authenticated except where explicitly anonymous.
Env is a modeling device that specifies the protocol

behavior in the context of arbitrary exogenous event se-
quences occurring over time. Upon receipt of message

11In our specific case study, r = 12 and the trustees are the twelve US
Circuit Courts of Appeals. The trustees are the parties which participate
in the multi-party computation of aggregate statistics based on input
data from all judges, as shown in Figure 4 and defined formally later in
this subsection.

clock, Env responds with the current time. To model
the occurrence of an exogenous event e (e.g., a case in
need of surveillance), Env sends information about e to
the affected parties (e.g., a law enforcement agency).

Next, we give the syntax of our cryptographic tools,12

and then define the behavior of the remaining parties.

A commitment scheme is a triple of probabilistic poly-
time algorithms C= (Setup,Commit,Open) as follows.
• Setup(1κ) takes as input a security parameter κ (in

unary) and outputs public parameters pp.
• Commit(pp,m,ω) takes as input pp, a message m,

and randomness ω . It outputs a commitment c.
• Open(pp,m′,c,ω ′) takes as input pp, a message

m′, and randomness ω ′. It outputs 1 if c =
Commit(pp,m′,ω ′) and 0 otherwise.

pp is generated in an initial setup phase and thereafter
publicly known to all parties, so we elide it for brevity.

Algorithm 1 Law enforcement agency Ai

• On receipt of a surveillance request event e =
(Surveil,u,s) from Env, where u is the public key of a
company and s is the description of a surveillance request
directed at u: send message (u,s) to a judge.13

• On receipt of a decision message (u,s,d) from a judge
where d 6= reject:14(1) generate a commitment c =
Commit((s,d),ω) to the request and store (c,s,d,ω) lo-
cally; (2) generate a SNARK proof π attesting compliance
of (s,d) with relevant regulations; (3) post (c,π) to the
ledger; (4) send request (s,d,ω) to company u.

• On receipt of an audit request (c,P,z) from the public:
generate decision b← Adp

i (c,P,z). If b = accept, gener-
ate a SNARK proof π attesting compliance of (s,d) with
the regulations indicated by the audit request (c,P,z); else,
send (c,P,z,b) to a judge.13

• On receipt of an audit order (d,c,P,z) from a judge: if
d = accept, generate a SNARK proof π attesting com-
pliance of (s,d) with the regulations indicated by the audit
request (c,P,z).

Agencies. Each agency Ai has an associated decision-
making process Adp

i , modeled by a stateful algorithm that
maps audit requests to accept∪{0,1}∗, where the out-
put is either an acceptance or a description of why the
agency chooses to deny the request. Each agency oper-

12For formal security definitions, beyond syntax, we refer to any
standard cryptography textbook, such as [26].

13For the purposes of our exposition, this could be an arbitrary judge.
In practice, it would likely depend on the jurisdiction in which the
surveillance event occurs, and in which the law enforcement agency
operates, and perhaps also on the type of case.

14For simplicity of exposition, Algorithm 1 only addresses the case
d 6= reject, and omits the possibility of appeal by the agency. The
algorithm could straightforwardly be extended to encompass appeals,
by incorporating the decision to appeal into Adp

i .
15This is the step invoked by requests for unsealed documents.



Algorithm 2 Judge Ji

• On receipt of a surveillance request (u,s) from an
agency A j: (1) generate decision d ← Jdp1i (s); (2)
send response (u,s,d) to A j; (3) generate a commit-
ment c = Commit((u,s,d),ω) to the decision and store
(c,u,s,d,ω) locally; (4) post (CoverSheet(d),c) to the
ledger.

• On receipt of denied audit request information ζ from
an agency A j: generate decision d ← Jdp2i (ζ ), and send
(d,ζ ) to A j and to the public P.

• On receipt of a data revelation request (c,z) from the
public:15generate decision b← Jdp3i (c,z). If b= accept,
send to the public P the message and randomness (m,ω)
corresponding to c; else, if b = reject, send reject to
P with an accompanying explanation if provided.

ates according to Algorithm 1, which is parametrized by
its own Adp

i . In practice, we assume Adp
i would be instan-

tiated by the agency’s human decision-making process.

Judges. Each judge Ji has three associated decision-
making processes, Jdp1i , Jdp2i , and Jdp3i . Jdp1i maps
surveillance requests to either a rejection or an authoriz-
ing court order; Jdp2i maps denied audit requests to either
a confirmation of the denial, or a court order overturn-
ing the denial; and Jdp3i maps data revelation requests
to either an acceptance or a denial (perhaps along with
an explanation of the denial, e.g., “this document is still
under seal”). Each judge operates according to Algo-
rithm 2, which is parametrized by the individual judge’s
(Jdp1i ,Jdp2i ,Jdp3i ).

Algorithm 3 Company Ci

• Upon receiving a surveillance request (s,d,ω) from an
agency A j, if the court order d bears the valid signature
of a judge and Commit((s,d),ω) matches a correspond-
ing commitment posted by law enforcement on the ledger,
then: (1) generate commitment c← Commit(δ ,ω) and
store (c,δ ,ω) locally; (2) generate a SNARK proof π at-
testing that δ is compliant with a s the judge-signed order
d; (3) post (c,π) anonymously to the ledger; (4) reply to
A j by furnishing the requested data δ along with ω .

The public. The public P exhibits one main type of be-
havior in our model: upon receiving an event message
e = (a,ξ ) from Env (describing either an audit request
or a data revelation request), P sends ξ to a (an agency
or court). Additionally, the public periodically checks
the ledger for validity of posted SNARK proofs, and take
steps to flag any non-compliance detected (e.g., through
the court system or the news media).

Companies and trustees. Algorithms 3 and 4 describe
companies and trustees. Companies execute judge-

Algorithm 4 Trustee Ti

• Upon receiving an aggregate statistic event message e =
(Compute, f ,D1, . . . ,Dn) from Env:

1. For each i′ ∈ [r] (such that i′ 6= i), send e to Ti′ .
2. For each j ∈ [n], send the message ( f ,D j) to J j. Let

δ j,i be the response from J j.
3. With parties T1, . . . ,Tr, participate in the MPC pro-

tocol MPC with input (δ1,i, . . . ,δn,i), to compute the
functionality ReconInputs◦ f , where ReconInputs is
defined as follows.

ReconInputs
(
(δ1,i′ , . . . ,δn,i′)

)
i′∈[r] =(

Recon(δ j,1, . . . ,δ j,r)
)

j∈[n]

Let y denote the output from the MPC.16

4. Send y to J j for each j ∈ [n].17

• Upon receiving an MPC initiation message e =
(Compute, f ,D1, . . . ,Dn) from another trustee Ti′ :

1. Receive a secret-share δ j,i from each judge J j respec-
tively.

2. With parties T1, . . . ,Tr, participate in the MPC pro-
tocol MPC with input (δ1,i, . . . ,δn,i), to compute the
functionality ReconInputs◦ f .

authorized instructions and log their actions by posting
commitments on the ledger. Trustees run MPC to com-
pute aggregate statistics from data provided in secret-
shared form by judges; MPC events are triggered by Env.

6 Evaluation of MPC Implementation

In our proposal, judges use secure multiparty computa-
tion (MPC) to compute aggregate statistics about the ex-
tent and distribution of surveillance. Although in princi-
ple, MPC can support secure computation of any func-
tion of the judges’ data, full generality can come with
unacceptable performance limitations. In order that our
protocols scale to hundreds of federal judges, we narrow
our attention to two kinds of functions that are particu-
larly useful in the context of surveillance.

The extent of surveillance (totals). Computing totals
involves summing values held by the parties without
revealing information about any value to anyone other
than its owner. Totals become averages by dividing by
the number of data points. In the context of electronic
surveillance, totals are the most prevalent form of com-
putation on government and corporate transparency re-
ports. How many court orders were approved for cases
involving homicide, and how many for drug offenses?
How long was the average order in effect? How many
orders were issued in California? [9] Totals make it pos-
sible to determine the extent of surveillance.



The distribution of surveillance (thresholds). Thresh-
olding involves determining the number of data points
that exceed a given cut-off. How many courts issued
more than ten orders for data from Google? How many
orders were in effect for more than 90 days? Unlike to-
tals, thresholds can reveal selected facts about the distri-
bution of surveillance, i.e., the circumstances in which
it is most prevalent. Thresholds go beyond the kinds of
questions typically answered in transparency reports, of-
fering new opportunities to improve accountability.

To enable totals and thresholds to scale to the size of
the federal court system, we implemented a hierarchi-
cal MPC protocol as described in Figure 4, whose design
mirrors the hierarchy of the court system. Our evaluation
shows the hierarchical structure reduces MPC complex-
ity from quadratic in the number of judges to linear.

We implemented protocols that make use of totals and
thresholds using two existing JavaScript-based MPC li-
braries, WebMPC [16, 29] and Jiff [5]. WebMPC is the
simpler and less versatile library; we test it as a baseline
and as a “sanity check” that its performance scales as ex-
pected, then move on to the more interesting experiment
of evaluating Jiff. We opted for JavaScript libraries to fa-
cilitate integration into a web application, which is suit-
able for federal judges to submit information through a
familiar browser interface, regardless of the differences
in their local system setups. Both of these libraries are
designed to facilitate MPC across dozens or hundreds
of computers; we simulated this effect by running each
party in a separate process on a computer with 16 CPU
cores and 64GB of RAM. We tested these protocols on
randomly generated data containing values in the hun-
dreds, which reflects the same order of magnitude as data
present in existing transparency reports. Our implemen-
tations were crafted with two design goals in mind:

1. Protocols should scale to roughly 1,000 parties,
the approximate size of the federal judiciary [10],
performing efficiently enough to facilitate periodic
transparency reports.

2. Protocols should not require all parties to be online
regularly or at the same time.

In the subsections that follow, we describe and evaluate
our implementations in light of these goals.

6.1 Computing Totals in WebMPC

WebMPC is a JavaScript-based library that can securely
compute sums in a single round. The underlying proto-
col relies on two parties who are trusted not to collude
with one another: an analyst who distributes masking in-
formation to all protocol participants at the beginning of
the process and receives the final aggregate statistic, and
a facilitator who aggregates this information together in

Figure 5: Performance of MPC using WebMPC library.

masked form. The participants use the masking infor-
mation from the analyst to mask their inputs and send
them to the facilitator, who aggregates them and sends
the result (i.e., a masked sum) to the analyst. The ana-
lyst removes the mask and uncovers the aggregated re-
sult. Once the participants have their masks, they receive
no further messages from any other party; they can sub-
mit this masked data to the facilitator in an uncoordinated
fashion and go offline immediately afterwards. Even if
some anticipated participants do not send data, the pro-
tocol can still run to completion with those who remain.

To make this protocol feasible in our setting, we need
to identify a facilitator and analyst who will not collude.
In many circumstances, it would be acceptable to rely on
reputable institutions already present in the court system,
such as the circuit courts of appeals, the Supreme Court,
or the Administrative Office of the US Courts.

Although this protocol’s simplicity limits its general-
ity, it also makes it possible for the protocol to scale ef-
ficiently to a large number of participants. As Figure 5
illustrates, the protocol scales linearly with the number
of parties. Even with 400 parties—the largest size we
tested—the protocol still completed in just under 75 sec-
onds. Extrapolating from the linear trend, it would take
about three minutes to compute a summation across the
entire federal judiciary. Since existing transparency re-
ports are typically released just once or twice a year, it
is reasonable to invest three minutes of computation (or
less than a fifth of a second per judge) for each statistic.

6.2 Thresholds and Hierarchy with Jiff
To make use of MPC operations beyond totals, we turned
to Jiff, another MPC library implemented in JavaScript.
Jiff is designed to support MPC for arbitrary function-
alities, although inbuilt support for some more complex
functionalities are still under development at the time of
writing. Most importantly for our needs, Jiff supports
thresholding and multiplication in addition to sums. We
evaluated Jiff on three different MPC protocols: totals (as
with WebMPC), additive thresholding (i.e., how many
values exceeded a specific threshold?), and multiplicative
thresholding (i.e., did all values exceed a specific thresh-
old?). In contrast to computing totals via summation,
certain operations like thresholding require more compli-



Figure 6: Flat total (red), additive threshold (blue), and
multiplicative thresholds (green) protocols in Jiff.

Figure 7: Hierarchical total (red), additive threshold
(blue), and multiplicative thresholds (green) protocols in
Jiff. Note the difference in axis scales from Figure 6.

cated computation and multiple rounds of communica-
tion. By building on Jiff with our hierarchical MPC im-
plementation, we demonstrate that these operations are
viable at the scale required by the federal court system.

As a baseline, we ran sums, additive thresholding, and
multiplicative thresholding benchmarks with all judges
as full participants in the MPC protocol sharing the
workload equally, a configuration we term the flat pro-
tocol (in contrast to the hierarchical protocol we present
next). Figure 6 illustrates that the running time of these
protocols grows quadratically with the number of judges
participating. These running times quickly became un-
tenable. While summation took several minutes among
hundreds of judges, both thresholding benchmarks could
barely handle tens of judges in the same time envelopes.
These graphs illustrate the substantial performance dis-
parity between summation and thresholding.

In Section 4, we described an alternative “hierarchi-
cal” MPC configuration to reduce this quadratic growth
to linear. As depicted in Figure 4, each lower-court judge
splits a piece of data into twelve secret shares: one for
each circuit court of appeals. These shares are sent to the
corresponding courts, who conduct a twelve-party MPC
that performs a total or thresholding operation based on
the input shares. If n lower-court judges participate,
the protocol is tantamount to computing n twelve-party
summations followed by a single n-input summation or
threshold. As n increases, the amount of work scales lin-
early. So long as at least one circuit court remains honest
and uncompromised, the secrecy of the lower court data
endures, by the security of the secret-sharing scheme.

Figure 7 illustrates the linear scaling of the twelve-
party portion of the hierarchical protocols; we measured
only the computation time after the circuit courts re-
ceived all of the additive shares from the lower courts.
While the flat summation protocol took nearly eight min-
utes to run on 300 judges, the hierarchical summation
scaled to 1000 judges in less than 20 seconds, besting
even the WebMPC results. Although thresholding char-
acteristically remained much slower than summation, the
hierarchical protocol scaled to nearly 250 judges in about
the same amount of time that it took the flat protocol to
run on 35 judges. Since the running times for the thresh-
old protocols were in the tens of minutes for large bench-
marks, the linear trend is noisier than for the total proto-
col. Most importantly, both of these protocols scaled lin-
early, meaning that—given sufficient time—thresholding
could scale up to the size of the federal court system.
This performance is acceptable if a few choice thresholds
are computed at the frequency at which existing trans-
parency reports are published.18

One additional benefit of the hierarchical protocols is
that lower courts do not need to stay online while the
protocol is executing, a goal we articulated at the begin-
ning of this section. A lower court simply needs to send
in its shares to the requisite circuit courts, one message
per circuit court to a grand total of twelve messages, af-
ter which it is free to disconnect. In contrast, the flat
protocol grinds to a halt if even a single judge goes of-
fline. The availability of the hierarchical protocol relies
on a small set of circuit courts who could invest in more
robust infrastructure.

7 Evaluation of SNARKs

We define the syntax of preprocessing zero-knowledge
SNARKs for arithmetic circuit satisfiability [15].

A SNARK is a triple of probabilistic polynomial-time
algorithms SNARK= (Setup,Prove,Verify) as follows:

• Setup(1κ ,R) takes as input the security parameter
κ and a description of a binary relation R (an arith-
metic circuit of size polynomial in κ), and outputs a
pair (pkR,vkR) of a proving key and verification key.

• Prove(pkR,(x,w)) takes as input a proving key
pkR and an input-witness pair (x,w) and out-
puts a proof π attesting to x ∈ LR, where LR =
{x : ∃w s.t. (x,w) ∈ R} .

• Verify(vkR,(x,π)) takes as input a verification key
vkR and an input-proof pair (x,π) and outputs a bit
indicating whether π is a valid proof for x ∈ LR.

18Too high a frequency is also inadvisable due to the possibility of
revealing too granular information when combined with the timings of
specific investigations court orders.



Before participants can create and verify SNARKs,
they must establish a proving key, which any partici-
pant can use to create a SNARK, and a corresponding
verification key, which any participant can use to verify
a SNARK so created. Both of these keys are publicly
known. The keys are distinct for each circuit (represent-
ing an NP relation) about which proofs are generated,
and can be reused to produce as many different proofs,
with respect to that circuit, as desired. Key generation
uses randomness that, if known or biased, could allow
participants to create proofs of false statements [13]. The
key generation process must therefore protect and then
destroy this information.

Using MPC to do key generation based on randomness
provided by many different parties provides the guaran-
tee that as long as at least one of the MPC participants be-
haved correctly (i.e., did not bias his randomness, and de-
stroyed it afterward), the resulting keys are good (i.e., do
not permit proofs of false statements). This approach has
been used in the past, most notably by the cryptocurrency
Zcash [8]. Despite the strong guarantees provided by this
approach to key generation when at least one party is not
corrupted, concerns have been expressed about the wis-
dom of trusting in the assumption of one honest party in
the Zcash setting, which involves large monetary values
and a system design inherently centered around the prin-
ciples of full decentralization.

For our system, we propose key generation be done
in a one-time MPC among several of the tradition-
ally reputable institutions in the court system, such as
the Supreme Court or Administrative Office of the US
Courts, ideally together with other reputable parties from
different branches of government. In our setting, the use
of MPC for SNARK key generation does not constitute
as pivotal and potentially risky a trust assumption as in
Zcash, in that the court system is close-knit and inher-
ently built with the assumption of trustworthiness of cer-
tain entities within the system. In contrast, a decentral-
ized cryptocurrency (1) must, due to its distributed na-
ture, rely for key generation on MPC participants that are
essentially strangers to most others in the system; and (2)
could be said to derive its very purpose from not relying
on the trustworthiness of any small set of parties.

We note that since key generation is a one-time task
for each circuit, we can tolerate a relatively performance-
intensive process. Proving and verification keys can be
distributed on the ledger.

7.1 Argument Types
Our implementation supports three types of arguments.

Argument of knowledge for a commitment (Pk). Our
simplest type of argument attests the prover’s knowl-
edge of the content of a given commitment c, i.e., that

she could open the commitment if required. Whenever
a party publishes a commitment, she can accompany it
with a SNARK attesting that she knows the message and
randomness that were used to generate the commitment.
Formally, this is an argument that the prover knows m
and ω that correspond to a publicly known c such that
Open(m,c,ω) = 1.

Argument of commitment equality (Peq). Our second
type of argument attests that the content of two pub-
licly known commitments c1,c2 is the same. That is, for
two publicly known commitments c1 and c2, the prover
knows m1, m2, ω1, and ω2 such that Open(m1,c1,ω1) =
1∧Open(m2,c2,ω2) = 1∧m1 = m2.

More concretely, suppose that an agency wishes to
release relational information—that the identifier (e.g.,
email address) in the request is the same identifier that a
judge approved. The judge and law enforcemnet agency
post commitments c1 and c2 respectively to the identi-
fiers they used. The law enforcement agency then posts
an argument attesting that the two commitments are to
the same value.19 Since circuits use fixed-size inputs, an
argument implicitly reveals the length of the committed
message. To hide this information, the law enforcement
agency can pad each input up to a uniform length.

Peq may be too revealing under certain circumstances:
for the public to verify the argument, the agency (who
posted c2) must explicitly identify c1, potentially reveal-
ing which judge authorized the data request and when.

Existential argument of commitment equality (P∃).
Our third type of commitment allows decreasing the res-
olution of the information revealed, by proving that a
commitment’s content is the same as that of some other
commitment among many. Formally, it shows that, for
publicly known commitments c,c1, ...,cN respectively to
secret values (m,ω),(m1,ω1), ...,(mN ,ωN), ∃ i such that
Open(m,c,ω) = 1∧Open(mi,ci,ωi) = 1∧m = mi. We
treat i as an additional secret input, so that, for any value
of N, only two commitments need to be opened. This
scheme trades off between resolution (number of com-
mitments) and efficiency, a question we explore below.

We have chosen these three types of arguments to im-
plement, but LibSNARK supports arbitrary predicates in
principle, and there are likely others that would be useful
and run efficiently in practice. A useful generalization
of Peq and P∃ would be to replace equality with more so-
phisticated, domain-specific predicates: instead of show-
ing that messages m1,m2 corresponding to a pair of com-

19To produce a proof for Peq, the prover (e.g., the agency) needs to
know both ω2 and ω1, but in some cases c1 (and thus ω1) may have
been produced by a different entity (e.g., the judge). Publicizing ω1 is
unacceptable as it compromises the hiding of the commitment content.
To solve this problem, the judge can include ω1 alongside m1 in secret
documents that both parties possess (e.g., the court order).



mitments are equal, one could show p(m1,m2) = 1 for
other predicates p (e.g., “less-than” or “signed by same
court”). The types of arguments that can be implemented
efficiently will expand as SNARK libraries’ efficiency
improves; our system inherits such efficiency gains.

7.2 Implementation
We implemented these zero-knowledge arguments with
LibSNARK [34], a C++ library for creating general-
purpose SNARKs from arithmetic circuits. We im-
plemented commitments using the SHA256 hash func-
tion;20 ω is a 256-bit random string appended to the
message before it is hashed. In this section, we show
that useful statements can be proven within a reasonable
performance envelope. We consider six criteria: the size
of the proving key, the size of the verification key, the
size of the proof statement, the time to generate keys, the
time to create proofs, and the time to verify proofs. We
evaluated these metrics with messages from 16 to 1232
bytes on Pk, Peq, and P∃ (N = 100, 400, 700, and 1000,
large enough to obscure links between commitments) on
a computer with 16 CPU cores and 64GB of RAM.

Argument size. The argument is just 287 bytes. Accom-
panying each argument are its public inputs (in this case,
commitments). Each commitment is 256 bits.21 An au-
ditor needs to store these commitments anyway as part of
the ledger, and each commitment can be stored just once
and reused for many proofs.

Verification key size. The size of the verification key
is proportional to the size of the circuit and its public
inputs. The key was 10.6KB for Pk (one commitment
as input and one SHA256 circuit) and 20.83KB for Peq
(two commitments and two SHA256 circuits). Although
P∃ computes SHA256 just twice, its smallest input, 100
commitments, is 50 times as large as that of Pk and Peq;
the keys are correspondingly larger and grow linearly
with the input size. For 100, 400, 700, and 1000 com-
mitments, the verification keys were respectively 1.0MB,
4.1MB, 7.1MB, and 10.2MB. Since only one verification
key is necessary for each circuit, these keys are easily
small enough to make large-scale verification feasible.

Proving key size. The proving keys are much larger:
in the hundreds of megabytes. Their size grows linearly
with the size of the circuit, so longer messages (which
require more SHA256 computations), more complicated
circuits, and (for P∃) more inputs lead to larger keys. Fig-
ure 8a reflects this trend. Proving keys are largest for P∃

20Certain other hash functions may be more amenable to representa-
tion as arithmetic circuits, and thus more “SNARK-friendly.” We opted
for a proof of concept with SHA256 as it is so widely used.

21LibSNARK stores each bit in a 32-bit integer, so an argument in-
volving k commitments takes about 1024k bytes. A bit-vector repre-
sentation would save a factor of 32.

with 1000 inputs on 1232KB messages and shrink as the
message size and the number of commitments decrease.
Pk and Peq, which have simpler circuits, still have bigger
proving keys for bigger messages. Although these keys
are large, only entities that create each kind of proof need
to store the corresponding key. Storing one key for each
type of argument we have presented takes only about
1GB at the largest input sizes.

Key generation time. Key generation time increased
linearly with the size of the keys, from a few seconds
for Pk and Peq on small messages to a few minutes for P∃
on the largest parameters (Figure 8b). Since key genera-
tion is a one-time process to add a new kind of proof in
the form of a circuit, we find these numbers acceptable.

Argument generation time. Argument generation time
increased linearly with proving key size and ranged from
a few seconds on the smallest keys to a couple of minutes
for largest (Figure 8c). Since argument generation is a
one-time task for each surveillance action and the exist-
ing administrative processes for each surveillance action
often take hours or days, we find this cost acceptable.

Argument verification time. Verifying Pk and Peq on the
largest message took only a few milliseconds. Verifica-
tion times for P∃ were larger and increased linearly with
the number of input commitments. For 100, 400, 700,
and 1000 commitments, verification took 40ms, 85ms,
243ms, and 338ms on the largest input. These times are
still fast enough to verify many arguments quickly.

8 Generalization

Our proposal can be generalized beyond ECPA surveil-
lance to encompass a broader class of secret information
processes. Consider situations in which independent in-
stitutions need to act in a coordinated but secret fash-
ion and, at the same time, are subject to public scrutiny.
They should be able to convince the public that their ac-
tions are consistent with relevant rules. As in electronic
surveillance, accountability requires the ability to attest
to compliance without revealing sensitive information.

Example 1 (FISA court). Accountability is needed in
other electronic surveillance arenas. The US Foreign In-
telligence Surveillance Act (FISA) regulates surveillance
in national security investigations. Because of the sensi-
tive interests at stake, the entire process is overseen by a
US court that meets in secret. The tension between se-
crecy and public accountability is even sharper for the
FISA court: much of the data collected under FISA may
stay permanently hidden inside US intelligence agencies,
while data collected under ECPA may eventually be used
in public criminal trials. This opacity may be justified,
but it has engendered skepticism. The public has no way



(a) Proving key size. (b) Key generation time. (c) Argument generation time.
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of knowing what the court is doing, nor any means of as-
suring itself that the intelligence agencies under the au-
thority of FISA are even complying with the rules of that
court. The FISA court itself has voiced concern about
that it has no independent means of assessing compliance
with its orders because of the extreme secrecy involved.
Applying our proposal to the FISA court, both the court
and the public could receive proofs of documented com-
pliance with FISA orders, as well as aggregate statistics
on the scope of FISA surveillance activity to the full ex-
tent possible without incurring national security risk.

Example 2 (Clinical trials). Accountability mecha-
nisms are also important to assess behavior of private
parties, e.g., in clinical trials for new drugs. There are
many parties to clinical trials and much of the informa-
tion involved is either private or proprietary. Yet, regula-
tors and the public have a need to know that responsible
testing protocols are observed. Our system can achieve
the right balance of transparency, accountability and re-
spect for privacy of those involved in the trials.

Example 3 (Public fund spending). Accountability in
spending of taxpayer money is naturally a subject of pub-
lic interest. Portions of public funds may be allocated for
sensitive purposes (e.g., defense/intelligence), and the
amounts and allocation thereof may be publicly unavail-
able due to their sensitivity. Our system would enable
credible public assurances that taxpayer money is being
spent in accordance with stated principles, while preserv-
ing secrecy of information considered sensitive.

8.1 Generalized Framework

We present abstractions describing the generalized ver-
sion of our system and briefly outline how the concrete
examples fit into this framework. A secret information
process includes the following components.
• A set of participants interact with each other. In our

ECPA example, these are judges, law enforcement
agencies, and companies.

• The participants engage in a protocol (e.g., to
execute the procedures for conducting electronic
surveillance). The protocol messages exchanged are

hidden from the view of outsiders (e.g., the public),
and yet it is of public interest that the protocol mes-
sages exchanged adhere to certain rules.

• A set of auditors (distinct from the participants)
seeks to audit the protocol, by verifying that a set
of accountability properties are met.

Abstractly, our system allows the controlled disclosure
of four types of information.

Existential information reveals the existence of a piece
of data, be it in a participant’s local storage or the content
of a communication between participants. In our case
study, existential information is revealed with commit-
ments, which indicate the existence of a document.

Relational information describes the actions partici-
pants take in response to the actions of others. In our
case study, relational information is represented by the
zero-knowledge arguments that attest that actions were
taken lawfully (e.g., in compliance with a judge’s order).

Content information is the data in storage and com-
munication. In our case study, content information is re-
vealed through aggregate statistics via MPC and when
documents are unsealed and their contents made public.

Timing information is a by-product of the other infor-
mation. In our case study, timing information could in-
clude order issuance dates, turnaround times for data re-
quest fulfilment by companies, and seal expiry dates.

Revealing combinations of these four types of infor-
mation with the specified cryptographic tools provides
the flexibility to satisfy a range of application-specific
accountability properties, as exemplified next.

Example 1 (FISA court). Participants are the FISA
Court judges, the agencies requesting surveillance autho-
rization, and any service providers involved in facilitat-
ing said surveillance. The protocol encompasses the le-
gal process required to authorize surveillance, together
with the administrative steps that must be taken to enact
surveillance. Auditors are the public, the judges them-
selves, and possibly Congress. Desirable accountability
properties are similar to those in our ECPA case study:
e.g., attestations that certain rules are being followed
in issuing surveillance orders, and release of aggregate
statistics on surveillance activities under FISA.



Example 2 (Clinical trials). Participants are the insti-
tutions (companies or research centers) conducting clin-
ical trials, comprising scientists, ethics boards, and data
analysts; the organizations that manage regulations re-
garding clinical trials, such as the National Institutes
of Health (NIH) and the Food and Drug Administra-
tion (FDA) in the US; and hospitals and other sources
through which trial participants are drawn. The proto-
col encompasses the administrative process required to
approve a clinical trial, and the procedure of gathering
participants and conducting the trial itself. Auditors are
the public, the regulatory organizations such as the NIH
and the FDA, and possibly professional ethics commit-
tees. Desirable accountability properties include, e.g.,
attestations that appropriate procedures are respected in
recruiting participants and administering trials; and re-
lease of aggregate statistics on clinical trial results with-
out compromising individual participants’ medical data.

Example 3 (Public fund spending). Participants
are Congress (who appropriates the funding), de-
fense/intelligence agencies, and service providers con-
tracted in the spending of said funding. The protocol
encompasses the processes by which Congress allocates
funds to agencies, and agencies allocate funds to par-
ticular expenses. Auditors are the public and Congress.
Desirable accountability properties include, e.g., attesta-
tions that procurements were within reasonable margins
of market prices and satisfied documented needs; and re-
lease of aggregate statistics on the proportion of allocated
money used and broad spending categories.

9 Conclusion

We present a cryptographic answer to the accountabil-
ity challenge currently frustrating the US court sys-
tem. Leveraging cryptographic commitments, zero-
knowledge proofs, and secure MPC, we provide the elec-
tronic surveillance process a series of scalable, flexi-
ble, and practical measures for improving accountabil-
ity while maintaining secrecy. While we focus on the
case study of electronic surveillance, these strategies are
equally applicable to a range of other secret information
processes requiring accountability to an outside auditor.
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