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Abstract

Drone systems have been deployed by various law en-
forcement agencies to monitor hostiles, spy on foreign drug
cartels, conduct border control operations, etc. This paper
introduces a real-time drone surveillance system to iden-
tify violent individuals in public areas. The system first
uses the Feature Pyramid Network to detect humans from
aerial images. The image region with the human is used
by the proposed ScatterNet Hybrid Deep Learning (SHDL)
network for human pose estimation. The orientations be-
tween the limbs of the estimated pose are next used to iden-
tify the violent individuals. The proposed deep network can
learn meaningful representations quickly using ScatterNet
and structural priors with relatively fewer labeled exam-
ples. The system detects the violent individuals in real-time
by processing the drone images in the cloud. This research
also introduces the aerial violent individual dataset used
for training the deep network which hopefully may encour-
age researchers interested in using deep learning for aerial
surveillance. The pose estimation and violent individuals
identification performance is compared with the state-of-
the-art techniques.

1. Introduction

The rate of criminal activities by individuals and threats
by terrorist groups has been on the rise in recent years.
The law enforcement agencies have been motivated to
use video surveillance systems to monitor and curb these
threats. Many automated video surveillance systems have
been developed in the past to monitor abandoned objects

(bags) [15], theft [5], fire or smoke [23], violent activi-
ties [9], etc.
Li et al. [15] developed a video surveillance system to
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identify the abandoned objects with the use of Gaussian
mixture models and Support Vector Machine. This system
is robust to illumination changes and performs with an ac-
curacy of 84.44%. This system is vital for the detection
of abandon bags in busy public areas, which may contain
bombs. Chuang et al. [5] used Forward-backward ratio his-
togram and a finite state machine to recognize robberies.
This system has proven to be very useful around automatic
teller machines (ATMs) and has detected 96% cases of the
theft. Seebamrungsat et al. [23] presented a fire detection
system based on HSV and YCbCr color models as it al-
lowed it to distinguish bright images more efficiently than
other RGB models. The system has been shown to detect
fire with an accuracy of more than 90.0%. Goya et al. [9] in-
troduced a Public Safety System (PSS) for identifying crim-
inal actions such as purse snatching, child kidnapping, and
fighting using distance, velocity, and area to determine the
human behavior. This system can identify the criminal ac-
tions with an accuracy of around 85%.

These reported systems have been very successful in de-
tecting and reporting various criminal activities. Despite
their impressive performance (more than 90% accuracy),
the area these systems can monitor is limited due to the re-
stricted field of view of the cameras. The law enforcement
agencies have been motivated to use aerial surveillance sys-
tems to surveil large areas. Governments have recently de-
ployed drones in war zones to monitor hostiles, to spy on
foreign drug cartels [18], conducting border control opera-
tions [32] as well as finding criminal activity in urban and
rural areas [13]. One or more soldiers pilot most of these
drones for long durations which makes these systems prone
to mistakes due to the human fatigue.

Surya et al. [19] proposed an autonomous drone surveil-
lance system capable of detecting individuals engaged in
violent activities in public areas. This first of its kind sys-
tem used the deformable parts model [6] to estimate human
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Figure 1. llustration presents the violent activities from the intro-
duced AVI dataset namely (clockwise from top) (i) Strangling, (ii)
Punching, (iii) Kicking, (iv) Shooting and (v) Stabbing. The image
of shooting activity involves multiple people in the same frame.

poses which are then used to identify the suspicious individ-
uals. This is an extremely challenging task as the images or
videos recorded by the drone can suffer from illumination
changes, shadows, poor resolution, and blurring. Also, the
humans can appear at different locations, orientations, and
scales. Despite the above-explained complications, the sys-
tem can detect violent activated with an accuracy of around
76% which is far less as compared to the greater than 90%
performance of the ground surveillance systems.

This paper introduces an improved real-time au-
tonomous drone surveillance system to identify violent in-
dividuals in public areas. The proposed method first uses
the feature pyramid network (FPN) [16] is used to detect
the humans from the aerial image. Next, the proposed Scat-
terNet Hybrid Deep Learning (SHDL) network is used to
estimate the pose for each detected human. Finally, the ori-
entations between the limbs of the estimated pose are used
by the support vector machine (SVM) to identify individu-
als engaged in violent activities.

The novelties of the proposed system and the advantages
over Surya et al.’s [19] technique are detailed below:

e Accurate Human Pose Estimation: The proposed sys-
tem uses the SHDL for human pose estimation. Deep
networks have achieved the state-of-the-art pose esti-
mation performance with high-level features [14, 22,
31] which gives the proposed system a competitive
edge.

e ScatterNet Hybrid Deep Network: The proposed
SHDL network for pose estimation is composed of
a hand-crafted ScatterNet front-end and a super-
vised learning based back-end formed of the mod-
ified coarse-to-fine deep regression network [1], re-
ferred from now as the regression network (RN). The
SHDL network is constructed by replacing the first

Figure 2. The figure (left) illustrates the 14 body key-points an-
notated on the human body. The description of the human body
points is as Facial Region (Purple): P1-Head, P2- Neck; Arms
Region (Red): P3- Right shoulder, P4- Right Elbow, P5- Right
Wrist, P6- Left Shoulder, P7- Left Elbow, P8- Left Wrist; Legs
Region (Green): P9-Right Hip, P10- Right Knee, P11-Right An-
kle, P12- Left Hip, P13- Left Knee, P14- Left Ankle. The figure
(right) shows the Parrot AR Drone used to capture the images in
the dataset and close-ups of few annotated keypoints.

convolutional, relu and pooling layers of the coarse-to-
fine deep regression network [ 1] with the hand-crafted
parametric log ScatterNet [27]. This accelerates the
learning of the regression network (RN) as the Scatter-
Net front-end extracts invariant (translation, rotation,
and scale) [24] edge features which can be directly
used to learn more complex patterns from the start of
learning. The invariant edge features can be benefi-
cial for this application as the humans can appear with
these variations in the aerial images.

e Rapid Training with Structural Priors: Training of
the SHDL network can be slow as it requires the op-
timization of several hyperparameters. The training
is shown to accelerate by initializing the CNN layer
filters of the regression network with structural priors
learned (unsupervised) using the PCANet [4] frame-
work (Fig. 3). The initialization with priors also re-
duces the need for sizeable labeled training datasets for
effective training which is especially advantageous for
this task or other applications [25, 10] as it can be ex-
pensive and time-consuming to generate keypoint an-
notations.

e Real-time Identification: The proposed system per-
forms the computation and memory demanding SHDL
network processes along with the activity classification
technique on the cloud while keeping short-term navi-
gation onboard. This allows the system to identify vi-
olent individuals in real-time which is an improvement
over the previous work of Surya et al. [19].

o Aerial Violent Individual (AVI) Dataset: The paper



presents the Aerial Violent Individual (AVI) dataset
of 2000 annotated images (10863 total individuals) of
5124 individuals engaged in violent activities. The
AVI dataset contains images with humans recorded
at different variations of scale, position, illumina-
tion, blurriness, etc. This dataset may encourage re-
searchers interested in using deep learning for aerial
surveillance applications.

The proposed Drone Surveillance System (DSS) is used
to identify the individuals engaged in violent activities from
aerial images. The pose estimation and activity classifica-
tion performance of the system is compared with the state-
of-the-art techniques.

The paper is divided into the following sections. Sec-
tion 2 presents the introduced AVI dataset while Section 3
introduces the proposed DSS system. Section 4 details the
experimental results and Section 5 concludes this research.

2. Aerial Violent Individual (AVI) Dataset

This research proposes an annotated Aerial Violent Indi-
vidual (AVI) dataset which is used by the proposed SHDL
network to learn pose estimation. The dataset is composed
of 2000 images where each image contains two and ten hu-
mans. The complete datasets consist of 10863 humans with
5124 (48%) engaged in one or more of the five violent activ-
ities of (1) Punching, (2) Stabbing, (3) Shooting, (4) Kick-
ing, and (5) Strangling as shown in Fig. 1. Each human
in the aerial image frame is annotated with 14 key-points
which are utilized by the proposed network as labels for
learning pose estimation as shown in Fig. 2. These activi-
ties are performed by 25 subjects between the ages of 18-25
years. These images are recorded from the parrot drone at
four heights of 2m, 4m, 6m and 8m (m: meters).

The violent individual identification task from these
aerial images is an extremely challenging problem as these
images can be affected by illumination changes, shadows,
poor resolution, and blurring. In addition to these varia-
tions, the humans can appear at different locations, orien-
tations, and scales. The proposed dataset includes images
with the above-detailed variations as these can significantly
alter the appearance of the humans and affect the perfor-
mance of the surveillance systems. The SHDL network,
when trained on the AVI dataset with these variations, can
learn to recognize humans despite these variations.

3. Drone Surveillance System

This section presents the Drone Surveillance System
(DSS) for the identification of individuals engaging in vi-
olent activities. The system first uses the feature pyra-
mid network (FPN) [16] to detect humans from the images
recorded by the drone. The proposed ScatterNet Hybrid
Deep Learning (SHDL) Network is then used to estimate

the pose of each detected human. Finally, the orientations
between the limbs of the estimated pose are used to identify
the violent individuals. The system uses cloud computation
to achieve the identification in real-time. Each part of the
Drone Surveillance System (DSS) is explained in the fol-
lowing sub-sections.

3.1. Human Detection

The DSS system makes uses of the feature pyramid net-
work (FPN) [16] to detect humans quickly from the im-
ages recorded by the drone. The FPN network detects the
humans by leveraging the pyramidal shape of a ConvNets
feature hierarchy while creating a feature pyramid that has
strong semantics at all scales. The result is a feature pyra-
mid that has rich semantics at all levels and is built quickly
from a single input image scale.

3.2. ScatterNet Hybrid Deep Learning Network

This section details the proposed ScatterNet Hybrid
Deep Learning (SHDL) network, inspired from Singh et
al’s work in [28, 29, 25, 30], composed by combining
the hand-crafted (front-end) two-layer parametric log Scat-
terNet [27] with the regression network (RN) (back-end)
shown in Fig. 3. The ScatterNet accelerates the learning
of the SHDL network by extracting invariant edge-based
features which allow the SHDL network to learn complex
features from the start of the learning [28]. The regression
network also uses structural priors to expedite the training
as well as reduce the dependence on the annotated datasets.
The ScatterNet (front-end) and regression network (RN)
(back-end) parts of the proposed SHDL network are pre-
sented below.

ScatterNet (front-end): The parametric log based
DTCWT ScatterNet [27] is an improved numerous version
of the hand-crafted multi-layer Scattering Networks [3, 26,

] proposed over the years. The parametric log Scatter-
Net extracts relatively symmetric translation invariant rep-
resentations using the dual-tree complex wavelet transform
(DTCWT) [12] and parametric log transformation layer.
The ScatterNet features are denser over scale as they are ex-
tracted from multi-resolution images at 1.5 times and twice
the size of the input image. Below we present the formula-
tion of the parametric DTCWT ScatterNet for a single in-
put image which may then be applied to each of the multi-
resolution images.

The parametric log ScatterNet is a hand-crafted two-
layer network which extracts translation invariant feature
representation from an input image or signal. The invariant
features are obtained at the first layer by filtering the input
signal = with dual-tree complex wavelets (better than co-
sine transforms [11]) v; ,- at different scales (j) and six pre-
defined orientations (r) fixed to 15°,45°,75°, 105°, 135°
and 165°. To build a more translation invariant represen-
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Figure 3. Illustration presents the {textithuman pose estimation pipeline that can be used to detect violent individuals in public areas or
large gatherings. The DSS framework uses the image recorded by the drone first to discover the humans within the image using the FPN
network [16]. The image regions containing the humans are given as input to the proposed SHDL network to detect 14 key-points on the
body for pose estimation. The proposed SHDL network uses the ScatterNet (front-end) to extract hand-crafted features from the input
region at LO, L1, and L2 using DTCWT filters at two scales and six fixed orientations. The handcrafted features extracted from the three
layers are concatenated and given as input to the 4 Convolutional layers of the Regression Network (RN) (L3, L4, LS, L6) (back-end) with
32, 32, 64 and 64 filters. Each RN convolutional layer is initialized with the PCA based structural priors with the same number of filters.
PCA layers can learn the undesired checkerboard filters (shown in red) which are avoided and not used as the prior for the Regression
Network. To detect and remove the checkerboard filters from the learned filter set; we used the method defined in [7]. The ScatterNets and
Structural priors have shown to improve the training of the proposed SHDL network as compared to the original coarse-to-fine regression
network [1] (which was modified to obtain the SHDL) as shown from the convergence graph. The 14 key-points detected on the human
are connected to construct the skeleton structure. The hand-crafted filters for the ScatterNet, learned structural PCA priors and the learned
filters of the regression network (RN) are shown.

tation, a point-wise Ly non-linearity (complex modulus) is
applied to the real and imaginary part of the filtered signal:

UPme] = %, | = yflox g, 2+ o x g 2 (1)

The parametric log transformation layer is then applied to
all the oriented representations extracted at the first scale
j = 1 with a parameter k;—1, to reduce the effect of outliers
by introducing relative symmetry of pdf [27], as shown be-
low:

ULj] =1og(Uj] + k;),  Uljl = [z x iyl ()

Next, a local average is computed on the envelope
|U1[Anm=1]| that aggregates the coefficients to build the de-
sired translation-invariant representation:

S1 P‘m:l] = |U1[>‘m:1]| * Pos 3

The high frequency components lost due to smoothing are
retrieved by cascaded wavelet filtering performed at the sec-
ond layer. Translation invarinace is introduced in these fea-
tures by applying the L2 non-linearity with averaing as ex-
plained above for the first layer [27].

The scattering coefficients at L0, L1, and L2 are:
S = (x % ¢or, S1[Am=1], S2[Am=1, Am=z] * d27) (4

The rotation and scale invariance are next obtained by
filtering jointly across the position (u), rotation (f) and
scale(y) variables as detailed in [24].

The features extracted from each multi-resolution at LO,
L1, and L2 are concatenated and given as input to the re-
gression network (RN), to learn high-level features for hu-
man pose estimation. The ScatterNet features help the pro-
posed SHDL to converge faster as the convolutional layers
of the regression network can learn more complex patterns
from the start of learning as it is not necessary to wait for the
first layer to learn invariant edges as the ScatterNet already
extracts them.

Pose Estimation with Structural Priors (back-end): The
invariant ScatterNet features are used by the regression net-
work (RN) of the SHDL network to learn pose estimation
from the AVI dataset. The regression network was con-
structed by removing the first convolutional, relu, pool-
ing, and normalization layers of the coarse-to-fine deep re-
gression network [1]. The regression network (RN) of the
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Figure 4. The Illustration shows the skeleton corresponding to the
humans in an image. The angles (shown in green for few limbs)
between the various limbs in this structure are used by the SVM to
recognize the humans engaged in violent activities.

SHDL is composed of four convolutional (L3 to L6 layers),
two fully connected, normalization, and max-pooling layers
as shown in Fig. 3.

The training objective is to estimate the optimal weights
of the filters in the convolutional layers using the AVI train-
ing dataset D = (5;Y"), which minimizes the Tukey’s bi-
weight loss function [ 1] of the network. Here .S are the Scat-
terNet features extracted from the input image (X') while Y
is a 28 element vector of (z, y) corresponding to the 14 key-
points annotated on the human body as shown in Fig. 2. The
network is optimized using backpropagation with stochas-
tic gradient descent. Dropout is utilized to avoid overfitting.
Tukey’s biweight loss function is very efficient as it sup-
presses the influence of outliers during backpropagation by
reducing the magnitude of the gradient close to zero [1].

Structural Priors: Each convolutional layer (L3 to L6)
of the regression network (RN) of the SHDL network is
initialized with structural priors to accelerate the training.
The Structural priors are obtained for each layer using the
PCANet [4] framework that learns a family of orthonormal
filters by minimizing the following reconstruction error:

min | X —VVIX|L, st VVT =T ()
Ve R*172%XK
Where X are patches sampled from N training features, I
is an identity matrix of size K x K. The solution of Eq. 5
in its simplified form represents K leading principal eigen-
vectors of X X7 obtained using Eigen decomposition.

The structural priors for layer 3 (L3) are learned on the
ScatterNet features, layer 4 (L4) on layer 3 outputs, layer
5 (LS5) on layer 4 outputs and so on. The structural pri-
ors for L3 to L6 layers learn filters that respond to a hi-
erarchy of features, similar to the features learned by the
CNN’s. These learned priors are used to initialize each con-
volutional layer resulting in accelerated training as shown

in Fig. 3 (Graph). Since it is swift to determine the struc-
tural priors, the whole process is much quicker than training
CNN’s with random weight initialization. The PCA frame-
work may learn undesired checkerboard filters. To detect
the checker-board filters from the learned filter set, we use
the method defined in [7]. These checkerboard filters are
avoided as filter priors.

3.3. Violent Individual Classification

The 14 key-points identified by the SHDL network are
connected to form a skeleton structure as shown in Fig. 3.
The orientations between the limbs of the skeleton structure
are derived as shown in Fig. 4. A support vector machine
(SVM) is trained on a vector of these orientations for six
classes (five violent activities and one neutral activity) to
perform multi-class classification. During test time, the ori-
entations between the limbs of the skeleton are given as in-
put to the SVM which classifies the humans as either neural
or assigns the most likely violent activity label.

3.4. Drone Image Acquisition and Cloud Processing

The images that form the AVI dataset, presented in Sec-
tion 2 are recorded using a Parrot AR Drone. The AR
Drone 2.0 consists of two cameras, an Inertial Measure-
ment Unit (IMU) including a 3-axis accelerometer, 3-axis
gyroscope and 3-axis magnetometer, and ultrasound and
pressure-based altitude sensors. It features a 1 GHz ARM
Cortex-A8 as the CPU and runs a Linux operating system.
The front-facing camera has a resolution of 1280x720 at
30fps with a diagonal field of view of 92° while the down-
ward facing camera is of the lower resolution of 320x240 at
60fps with a diagonal field of view of 64°. We use the front-
facing camera to record the images due to its higher resolu-
tion. The downward facing camera estimates the parameters
determining the state of the drone such as roll, pitch, yaw,
and altitude using the sensors onboard to measure the hori-
zontal velocity. The horizontal velocity calculation is based
on an optical flow-based feature as detailed in [2]. All the
sensor measurements are updated at the 200Hz rate.

The images recorded by the drone are transferred to the
Amazon cloud to achieve real-time identification. The slow
and memory intensive computations of the SHDL network
are processed on the Amazon cloud while keeping short-
term navigation onboard. Cloud computing has given the
flexibility of using unlimited computational resources (in-
cluding GPUs) which provides an edge with for applica-
tions requiring vast amounts of computational power peri-
odically [8].

4. Experimental Results

This section presents the training details and the per-
formance of the Drone Surveillance System (DSS) for the
identification of violent individuals on the AVI dataset. The
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Figure 5. Illustration shows the pose estimation performance via the detection of key-points for the (a) arms region, which constitutes the
wrist, shoulder and elbow, (b) legs region, which includes ankle, knee, and hip, and, (c) facial regions with the head and neck.

DSS system uses the FPN network [16] first to detect the
humans, the SHDL network for human pose estimation, and
then the orientations of the limbs of the estimated pose are
used to identify the violent individuals. The next sections
detail the performance of each part of the DSS system. The
classification performance is also compared with the state-
of-the-art technique proposed by Surya et al. [19], used to
identify persons of interest from aerial images.

4.1. Human Detector

The FPN network [16] pre-trained on the 80 category
COCO detection dataset is used to detect the humans
recorded by the drone in the AVI dataset. The FPN network
was able to detect 10558 humans out of the 10863 humans,
with an accuracy of 97.2%.

4.2. SHDL Parameters and Training

The image regions detected by the FPN network are re-
sized to 120 x 80 and normalized by subtracting the image
regions mean and dividing by its standard deviation.

ScatterNet: The resultant image region is given as input
to the ScatterNet (SHDL front-end) which extracts invariant
edge representations at L0, L1, and L2 using DTCWT filters
at 2 scales, and 6 fixed orientations.

Regression Network with Structural Priors: The regres-
sion network (SHDL back-end) with four convolutional lay-
ers (L3-L6) is trained on the concatenated ScatterNet fea-
tures (LO, L1, and L2) extracted from the 10558 image re-
gions (detected by FPN network, Section 4.1). The net-
work was trained on randomly selected 6334 image regions
(60%), validated against 2111 image regions (20%) and
tested on the remaining 2113 image regions (20%). The
network parameters are as follows: The base learning rate
is 10~5, which we decrease to 10~6 after 20 iterations, the

dropout is 0.5, the batch size is 20, and the total number
of iterations (epochs) is 90. The filters of the convolutional
layers are initialized with structural priors which are shown
to accelerate the training as compared to the DeepPose net-
work [31] as detailed in Section 3.2 and illustrated from the
convergence graph in Fig. 3.

4.3. Key-Point Detection Performance

The pose estimation performance of the SHDL network
is evaluated by comparing the coordinates of the detected 14
key-points with their ground truth values on the annotated
dataset. The key-point is deemed correctly located if it is
within a set distance of d pixels from a marked key-point
in the ground truth, as shown in Fig. 5 via the accuracy vs.
distance graphs, for different regions of the body.

The key-points detection analysis for the arms, legs, and
facial, region is presented below.

Arms Region: The arm region constitutes six points
namely: wrist key-points (P5 and P8), shoulder key-points
(P3 and P6), and elbow key-points(P4 and P7), as shown in
Fig. 2. Fig. 5(a) indicates that the SHDL network can detect
the wrist region key-points with an accuracy of around 60%,
for a pixel distance of d=5. The detection accuracy is much
higher for the elbow and shoulder region at roughly 85%
and 95% respectively, for the same pixel distance (d=5).

Legs Region: The leg region constitutes six key-points,
namely: hip key-points (P9, P12), knee key-points (P10,
P13), and ankle key-points (P11, P14), as shown in Fig. 2.
Fig. 5(b) indicates that the SHDL network detects hip key-
points with almost 100% for a pixel distance of d=5. The
detection accuracy is between 85% and 90% for the knee
key-points while the detection rate falls to around 85% for
the ankle key-points.

Facial Region: The facial region constitutes two points,
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Figure 6. The figure shows the performance of the Drone Surveillance System (DSS) on aerial images with only one violent individual,
recorded using the AR parrot drone at four different heights of 2m (Row 1), 4m (Row 2), 6m (Row 3), and 8m (Row 4) (m: meters). The
illustration also shows the individual engaged in different violent activities namely: Shooting (Column 1), Stabbing (Column 2), Kicking
(Column 3), Strangling (Column 4) and Punching (Column 5). The violent individual detected by the DSS framework is shown in red

while the neutral human is shown in cyan color. The estimated pose is also shown on top each detected human.

one the head (P1) and the other on the neck (P2), as shown
in Fig. 2. The algorithm detects the neck key-point (P2)
more accurately as compared the head key-point (P1) with
an accuracy of around 95% as opposed to roughly 77% ac-
curacy, for a pixel distance of d=5, as shown in Fig. 5(c).

The human pose estimation performance of the SHDL
network on the Aerial Violent Individual (AVI) dataset is
presented in Table 1. As observed from the Table, the
SHDL network estimates the human pose based on the 14
key-points at d = 5 pixel distance from the ground-truth,
with 87.6% accuracy.

Dataset Deep Learning Networks
SHDL CN CNE SpatialNet

AVI 87.6 79.6 80.1 83.4

Table 1. Comparison of the human pose estimation performance of
SHDL network with Coordinate network (CN) [20], Coordinate
extended network (CNE) [20] [21] and Spatial network [21] based
on the detection of the 14 key-points. The evaluation is presented
on the AVI dataset for maximum 5 pixels allowed distance (d=5)
from the annotated ground truth.

The human pose estimation performance of the SHDL
network is also compared with several state-of-the-art pose
estimation methods such as CoordinateNet (CN) [20], Co-
ordinateNet extended(CNE) [20], and SpatialNet [21]. The
proposed SHDL network outperforms them by a decent
margin.

4.4. Violent Individuals Identification

The detected key-points are connected to form a skeleton
structure as shown in Fig. 3. The orientations between the
limbs are concatenated as a vector. A support vector ma-
chine (SVM) with a Gaussian kernel is trained on the orien-
tation vector for each class of violent activity and one neu-
tral class for 6334 randomly selected human poses (60%)
to perform the multi-class classification. The SVM param-
eter (c) is selected as 14 while gamma parameter is set to
0.00002 using 5-fold cross-validation on the training set.
The classification accuracy on the AVI dataset of each vi-
olent activity is presented for 4224 (40%) human poses as
shown in Table 2.

The accuracy of the strangling and shooting activities are



Figure 7. The figure shows the performance of the Drone Surveillance System (DSS) on aerial images with multiple humans engaging
together in different violent activities. The violent individuals are highlighted in red color and neutral human in cyan color.

Dataset Violent Activities
Punching Kicking Strangling Shooting  Stabbing
DSS 89 94 85 82 92
Surya [19] 80 84 73 73 79

Table 2. Table presents the classification accuracies(%) for the vi-
olent activities on Aerial Violent Individual (AVI) dataset.

relatively lower due to their similarity as shown in Fig. 6.

Next, the classification accuracy for varying number of
human subjects engaged in a violent activity per image is
shown in Table 3.

Dataset  No. of Violent Individuals (Per Image)
1 2 3 4 5
DSS | 941 90.6 883 87.8 84.0

Table 3. The table presents the classification accuracies(%) with
the increase in individuals engaged in the violent activities in the
aerial images taken the Aerial Violent Individual (AVI) dataset.

The accuracy of the DSS system decreases with the in-
crease in the number of humans in the aerial image. This
can be due to the inability of the FPN network [16] to locate
all the humans or the incapability of the SHDL network to
estimate the pose of the humans accurately. The incorrect
pose can result in a wrong orientations vector which can
lead the SVM to classify the activities incorrectly.

The results presented in above table are encouraging as
the system is more likely to encounter multiple people in an
image frame. The DSS framework applied to images with
the different number of people engaged in violent activities
is shown in Fig. 7.

The classification performance is also compared with the
state-of-the-art technique which was developed to recognize
the person of interest from aerial images [19] as shown in
Table. 4. The proposed Drone Surveillance System (DSS)
was able to outperform the method by more than 10% on
the AVI dataset.

4.5. Runtime Performance

The runtime performance of the DSS framework is com-
puted on the cloud and consists of three parts: (i) detect-

Dataset Comparison
DSS  state-of-the-art [19]
AVI 88.8 77.8

Table 4. The table shows the comparison of the violent individ-
ual identification performance of the proposed system against the
state-of-the-art technique [19]

ing humans using the FPN network, (ii) human pose esti-
mation using the SHDL network, and (iii) classification of
the estimated pose. The deep learning framework was ac-
celerated using the cuDNN framework and NVIDIA Tesla
GPUs. The system detected the violent individuals at 5 fps
per second to 16 fps for a maximum of ten and a minimum
of two people, respectively, in the aerial image frame. The
processing varies depending on the number of individuals
within the image frame.

5. Conclusions

The paper proposed the real-time Drone Surveillance
System (DSS) framework that can detect one or more in-
dividuals engaged in violent activities from aerial images.
The framework first uses the FPN network to detect humans
after which the proposed SHDL network is used to estimate
the pose of the humans. The estimated poses are used by
the SVM to identify violent individuals.

The proposed SHDL network uses ScatterNet features
with Structural priors to achieve accelerated training for rel-
atively fewer labeled examples. The utilization of fewer
labeled examples for pose estimation is beneficial for this
application as it is expensive to collect annotated exam-
ples. The paper also introduced the Aerial Violent Individ-
ual (AVI) Dataset which can benefit other researcher aim-
ing to use deep learning for aerial surveillance applications.
The proposed DSS framework outperforms the state-of-the-
art technique on the AVI dataset. This framework will be
instrumental in detecting individuals engaged in violent ac-
tivities in public areas or large gatherings.
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